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One-dimensional method of investigating the localized states
in armchair graphene-like nanoribbons with defects∗

Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩),
Xiao-Long Lü(吕小龙), and Hang Xie(谢航)†

College of Physics, Chongqing University, Chongqing 401331, China

(Received 20 July 2017; revised manuscript received 12 September 2017; published online 20 November 2017)

In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-
like nanoribbons. The method is based on the tight-binding model and with a standing wave assumption. The system of
armchair graphene-like nanoribbons includes the armchair supercells with arbitrary elongation-type line defects and the
semi-infinite nanoribbons. With this method, we analyze many interesting localized states near the line defects in the
graphene and boron-nitride nanoribbons. We also derive the analytical expressions and the criteria for the localized states
in the semi-infinite nanoribbons.
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1. Introduction

Graphene, as a novel two-dimensional material, has at-
tracted a lot of research interest in this decade since it was
discovered in 2003.[1] It has many special electronic, optic
and magnetic properties due to its energy band structure.[2,3]

For example, graphene has the Dirac-like electron with the
Klein tunneling effect.[4,5] It has the half integer quantum Hall
effect.[6]

With the restriction of one dimension, the bulk graphene
forms the graphene nanoribbons (GNR). Armchair GNR
(aGNR) and zigzag GNR (zGNR) are the two basic types.[7]

There are edge states on the edges of the zGNR.[7] The early
tight binding (TB) model shows that these edge states appear
near the Fermi level with a large density of states.[7,8] With the
Hubbard model and the first-principles calculations, it is found
that these edge states actually have an energy gap near the
Fermi level with opposite spin polarizations on two edges.[9,10]

Some half-metal structures can be prepared by the atom mod-
ulations in zGNR systems.[11–13] Furthermore, the properties
of some complex structures, such as the transport properties
of the double-layer graphene with line defects, the graphene
superlattice and doubly-stacked zGNR have been studied by
many methods.[14–16] In the thermal physics aspect, there are
also a lot of researches. For example, the ballistic thermoelec-
tric properties for the bended GNRs and the graphene with
impurities have been investigated by the first-principles calcu-
lations and the quantum transport theory.[17,18]

For aGNR, the TB calculation results show that they may
be conductors or semiconductors.[7,19] The first-principles re-
sults show that for the metal-type aGNR in the TB model,

in fact, there is still a very small gap.[20,21] However, the
TB method is still a brief and useful model. It employs
the pz orbital near the Fermi level to describe the electrical
properties of GNR. The results basically agree with the first-
principles calculations. In the GNR with a uniform stress,
the TB model also gives roughly the same results as the first-
principles calculation.[22,23]

For the uniform aGNR, an analytical solution was
proposed.[24] In this solution, the transverse wave function of
the ribbon was assumed to have a standing-wave form. Under
this assumption, the electron states in a semi-infinite aGNR or
in a uniform aGNR block were also studied.[25–27]

However, these analytical studies are only suitable for
uniform nanoribbons. For inhomogeneous aGNR systems, to
our knowledge, there has been no simple analytical expres-
sion and the energy band has to be obtained numerically. In
this paper we develop a new one-dimensional (1D) analytical
method which is suitable for the inhomogeneous aGNR sys-
tems. Within this 1D method, we calculate the energy band
for aGNRs in the presence of various line defects or uniax-
ial strains. We also extend this method to the non-equilibrium
Green’s function (NEGF) theory for the transmission calcula-
tion. In the case of very large aGNR systems, our method can
obtain accurate results without heavy computations because it
only needs to deal with small matrices.

In the semi-infinite or block aGNR systems, the zigzag
edges support some localized electron states, which are similar
to the edge states in zGNR.[25–27] These states were also veri-
fied from the surface Green’s function calculation in our previ-
ous work.[28] On the zigzag edges of bilayer graphene, the so-
lutions of localized states were also proposed.[29] These local-
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ized states are due to the zigzag edges or defects in graphene.
In other materials such as silicon quantum dots and nanocrys-
tals, people also found such local states. They are related to
the dangling bonds, impurities or defects on curved surfaces
with the energy in band gaps.[30–32]

In this paper we employ this 1D method to investi-
gate these localized states in the aGNR or the boron-nitride
nanoribbons with line defect. We obtain analytic solutions and
the critical condition for these localized states in semi-infinite
aGNRs. We also find some asymmetrical localized states in
the boron-nitride nanoribbon with a line defect.

The rest of this paper is organized as follows. In Sec-
tion 2, presented are the model and theory, including the 1D
supercell method and its combination with the transfer matrix
and the NEGF theory. In Section 3, the results, including the
band structures and localized states in aGNR with line defects
are given. The local states in the semi-infinite nanoribbon and
the boron-nitride nanoribbon are also analyzed. Finally, some
conclusion are drawn from the present study in Section 4.

2. Theory and models
2.1. 1D supercell method in aGNR system

For the simple aGNR as shown in Fig. 1(a), there are two
types of carbon atoms (A and B) in one unit cell. In the tight
binding model, the wavefunction can be written as the follow-
ing form:[24]

ψ =CA ∑
A

N

∑
j=1

e ikxAφA ( j) |A〉+CB ∑
B

N

∑
j=1

e ikxBφB ( j) |B〉, (1)

where φA ( j) and φB ( j) are the components for A and B sub-
lattices with the index j in the y direction; |A〉 and |B〉 are the
wave functions of pz orbitals located in the A and B sublat-
tices. CA and CB are superposition coefficients. The Bloch
factors e ikxAi and e ikxAi are from the translational invariance
in the horizontal direction. In the vertical direction, with the
hard-wall boundary as shown in Fig. 1(a), we have

φA (0) = φB (0) = 0,

φA (N +1) = φB (N +1) = 0. (2)

Then the following standing-wave-formed wavefunction is ob-
tained:

φA ( j) = φB ( j) = sin

(
qy j

√
3

2
a

)
. (3)

With this form of wavefunction and the hard wall boundary
condition, we have

qy (N +1)

√
3

2
a = pπ, (4)

where p= 1,2, . . . ,N. Thus the wavefunction in the y direction
can be written as

φA ( j) = φB ( j) = sin
(

pπ j
N +1

)
. (5)
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Fig. 1. (color online) Atomic structures for the armchair graphene or graphene-like nanoribbons. Panel (a) shows the simple aGNR, each unit cell
contains N A- and B-carbon atoms. The dashed lines in the top/bottom region indicate the boundaries of the standing wave. Panel (b) shows the
reduced 1D aGNR supercell with 2M sub-unit cells; panel (c) shows the aGNR supercell with an elongation-type line defect (indicated by the dash
lines in the middle region); panel (d) shows the supercell of a boron-nitride nanoribbon. The boron atoms are green and the nitride atoms are red.
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We substitute this form of the wavefunction into the
Schrödinger equation with the tight-binding approximation
and obtain the eigenvalue equation for the band calculation.[24]

This standing-wave assumption of the wavefunction can re-
duce any uniform (in y direction) aGNR system into a 1D sys-
tem. Figure 1(b) shows such a reduced 1D chain system. With
this method, we can calculate some large system with a much
less computation load.

Now we generalize this idea to the supercell system, in-
cluding the supercell with some line defects. Usually the line
defect in graphene consists of the periodically repeated one oc-
tagonal and two pentagonal rings in the y direction.[33,34] Here
in this paper we only tune down some hopping parameters
along the y direction, just as the bonds in the GNR are elon-
gated by stress,[22,23] thereby presenting a simple ‘line defect’
(see Fig. 1(c)). This can maintain the hexagon topology in the
aGNR for our 1D calculation. So the system is still uniform
in the vertical direction, but the translation invariance in the
horizontal direction is not satisfied due to the inhomogeneity.
Furthermore, from Fig. 1(c) we see that the line defect destroys
the six-member ring in one unit cell and the A-type atoms (or
B-type atoms) in the original six-member ring are not equiv-
alent to each other. So we have to separate the original unit
cell into two new sub-unit cells (dash boxes in Fig. 1(b)). Also
due to the broken translational symmetry, in the new model
none of the superposition coefficients of An (and Bn) in differ-
ent new sub-unit cells are not constant. These coefficients are
involved in a set of equations for eigenvalue calculation.

We assume that the supercell system has N columns in
the y direction and 2M sub-unit cells in the x direction. In the
TB approximation, the wavefunction can be written as

|ψ〉=
2M

∑
n=1

[ N

∑
j=1

φA ( j) ·An |A〉+
N

∑
j=1

φB ( j) ·Bn |B〉
]
, (6)

where φA ( j) and φB ( j) are the components of A-type atom
and B-type atom in the j-th column of the sub-unit cell (see
Eq. (5)). An and Bn denote the coefficient components of A-
type atom and B-type atom in the horizontal direction. Under
the TB approximation, the Hamiltonian is written as

H = ∑
i

εi |i〉〈i|+ ∑
〈i, j〉

ti, j |i〉〈 j| , (7)

where 〈i, j〉 denotes the nearest neighbors. If we choose εi = 0
and ti, j = t, and substitute Eqs. (6) and (7) into the Schrödinger
equation, then we will have the following equation for the A-
type atoms in an aGNR supercell,

EφA ( j)An− tφB ( j)Bn+1

− tφB ( j+1)Bn− tφB ( j−1)Bn = 0. (8)

Similarly, we have the following equation for the B-type atoms
in an aGNR supercell

EφB ( j)Bn− tφA ( j)An−1

− tφA ( j+1)An− tφA ( j−1)An = 0. (9)

Substituting Eq. (5) into Eqs. (8) and (9), and with some
derivations, we have

EAn− tBn+1−2t cos
(

pπ

N +1

)
Bn = 0, (10a)

EBn− tAn−1−2t cos
(

pπ

N +1

)
An = 0. (10b)

We see that the two equations above are j-independent. This
means that the system is transformed into the 1D form. Then
we employ the Bloch boundary condition

B2M+1 = e ik2aMB1, (11a)

A0 = e−ik2aMA2M. (11b)

Substituting this Bloch boundary condition into Eq. (10),
we obtain the eigenvalue matrix equation which involves the
Bloch wave vector k. For an aGNR supercell with 2M unit
cells in the x direction, there are 4M unknowns (An and Bn).
For each matrix equation, we find that the number of p values
(Eq. (5)) that can be chosen is N/2, which corresponds to the
number of the standing-wave modes in the y direction (which
will be discussed in more detail later). So the total number
of eigenvalues is 2MN, which exactly equals the number of
energy bands in the common TB method.

The equations above are for the uniform (in the x direc-
tion) aGNR supercell. For the supercell with a line defect, we
assume that the defect only changes the hopping integral t as
in the strained GNR,[22,23] equations (10a) and (10b) are mod-
ified into

EAn− tA,1
n Bn+1−2tA,2

n cos
(

pπ

N +1

)
Bn = 0, (12a)

EBn− tB,1
n An−1−2tB,2

n cos
(

pπ

N +1

)
An = 0, (12b)

where tA,1
n and tA,2

n correspond to the hopping integrals from
the A-type atoms, with tA,1

n being the hopping integral from A-
type atom to the forward horizontal B-type atom, and tA,2

n be-
ing the hopping integral from A-type atom to the top (bottom)-
left B-type atoms; tB,1

n and tB,2
n are defined similarly to those

in Fig. 1(b). We assume that the line defect only changes the
hopping integrals in the horizontal direction. It is easy to see
that tA,1

n−1 = tB,1
n and tA,2

n = tB,2
n .

With the approach above, we set up a new one-
dimensional model formulism for the band structure calcula-
tion of an aGNR supercell system.
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2.2. Calculations for the localized state in a semi-infinite
aGNR

Here we consider a simple semi-infinite aGNR as shown
in Fig. 1(a). According to the theory we generalized before,
equations (10a) and (10b) also hold except the equation in the
boundary sub-unit, which is modified into

EB1−2t cos
(

pπ

N +1

)
A1 = 0. (13)

From Eqs. (10a) and (10b), we obtain a transfer matrix
equation(

Bn+1
An+1

)
= 𝑇

(
Bn
An

)
=

(
−τt−1 Et−1

−Et−1 t−1E2τ−1− tτ−1

)(
Bn
An

)
, (14)

where τ = 2t cos
( pπ

N+1

)
. To solve the semi-infinite problem

by this transfer matrix method, we calculate the eigenvalues
λ1 and λ2, and the corresponding eigenvectors [U11,U21]

T and
[U12,U22]

T of 𝑇 . The two eigenvalues satisfy the condition
λ1λ2 = 1. To obtain a solution of localized (decaying) state,
the eigenvalues must be real. Assume λ1 < 1 and λ2 > 1, then
we will have(

Bn+1
An+1

)
=

(
U11 U12
U21 U22

)−1(
λ1 0
0 λ2

)(
U11 U12
U21 U22

)(
Bn
An

)
.

Iterating the formula above, we obtain the following re-
sult: (

Bn+1
An+1

)
=

(
U11 U12
U21 U22

)−1(
λ n

1 0
0 λ n

2

)
×
(

U11 U12
U21 U22

)(
B1
A1

)
. (15)

Since we assume λ2 > 1, to avoid the divergence of the wave-
function, the following condition is required:

U21B1 +U22A1 = 0. (16)

Combining the boundary equation (Eq. (13)) and Eq. (16), we
haveU21 U22

E −2t cos
(

pπ

N +1

)( B1
A1

)
=𝐷

(
B1
A1

)
= 0.

We see that det𝐷 = 0 is a sufficient condition for the exis-
tence of a localized state. Our calculation indicates that such a
condition can be satisfied only with E = 0. Such a conclusion
is consistent with the Jiang et al.’s result.[25] When E = 0, we
can easily obtain the localized state solution from Eqs. (13)
and (14) as follows:

An = 0, (17a)

Bn =

(
−2cos

(
pπ

N +1

))n−1

B1. (17b)

For a convergent solution, it is apparent that p satisfies the
condition

2cos
(

pπ

N +1

)
< 1,

or

p >
N +1

3
. (18)

We find that this local state also exists in finite-sized graphene
nanoribbons (or graphene quantum dots).[35] In Ref. [35],

2pπ

(N +1)a0
− 2π

3a0
>

1
Ly

is the sufficient condition for the existence of a local state
for finite-sized graphene nanoribbons. As for a semi-infinite
aGNR Ly → ∞, we have p > (N +1)/3. This conclusion is
consistent with Eq. (18). It is easy to understand that for the
energy band beside the Dirac point, E ∝

√
k2

x + k2
y . If kx is a

pure imaginary number, ky must have a larger absolute value
than that of kx.

Finally, if A-type atom and B-type atom are differ-
ent as shown in Fig. 1(d) in an armchair boron–nitride
nanoribbon,[36] equations (10a), (10b), and (13) are modified,
respectively, into

(E− εB)B1−2t cos
(

pπ

N +1

)
A1 = 0, (19a)

(E− εA)An−2t cos
(

pπ

N +1

)
Bn− tBn+1 = 0, (19b)

(E− εB)Bn+1−2t cos
(

pπ

N +1

)
An+1− tAn = 0, (19c)

where εA and εB are the on-site energies of A-type atom and
B-type atom. When E = εB, we can obtain a similar localized
state.

2.3. Transmission calculation in aGNR system with the
NEGF theory

We also use this 1D model to calculate the transmis-
sion spectrum or local density of states (LDOS) for armchair
graphene-like nanoribbons with the NEGF theory.[37] The sys-
tem has to be uniform in the y direction for the feasibility of
our 1D method. From Eqs. (10a and (10b), we can obtain the
surface Green’s function of a semi-infinite 1D aGNR by the
Dyson’s equation,

gr
p =

E2 + t2− τ2 +

√
(E2 + t2− τ2)2−4E2t2

2t2E
, (20)

where τ = 2t cos
( pπ

N+1

)
and p = 1,2,3, . . .N/2. We see that

there exists a bound state when E = 0, which is self-consistent
with our previous conclusion. With the NEGF theory, we have(

Ep𝐼−𝐻p−Σ
r
p
)
𝐺r

p = 𝐼, (21)
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Σ
r
α,p = ℎDα,pgr

α,pℎαD,p, (22)

where 𝐼 is a unitary matrix with the dimension of the 1D
model device; Σ r

α,p = Σ r
L,p +Σ r

R,p is the retarded self-energy
with the mode p, which is given by the coupling Hamiltoni-
ans and the surface Green’s function of mode p; gr

α,p is given
by Eq. (20). (α = L,R, which means the left or right lead.)
The imaginary part of 𝐺r

i,i,p gives the local density of states
(LDOS) of mode p,

ρi,p (E) =−
1
π

Im[Gr
i,i,p(E)]. (23)

And the transmission coefficient of mode p can be calculated
from the NEGF theory[29]

Tp = tr
[
𝐺r

pΓL,p𝐺
a
pΓR,p

]
, (24)

where Γα,p = i
[
Σ r

α,p−Σ a
α,p
]

and 𝐺a
p =

[
𝐺r

p
]†. We find that

the total transmission coefficient is the sum of transmission

coefficients of all modes (p ranges from 1 to N/2). With this

method, we can avoid heavy matrix computations in calculat-

ing the transmission coefficient of very large GNR systems.

3. Results and discussion

3.1. Band and transmission calculations for simple aGNRs

Firstly, we use Eq. (10) to calculate a simple aGNR for a

benchmark. It is a supercell with M = 2. The hopping inte-

gral of the aGNR is chosen as t =−2.7 eV, which agrees well

with the results from the first principle calculations.[12] For the

widths with N = 6 and N = 8, we give the band structures and

transmission spectra in Figs. 2(a)–2(d). The band structures

agree well with the results in Ref. [24], and the transmission

spectra are also consistent with those of the band structures.
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Fig. 2. (color online) Band structures, transmission spectra and energy gaps of simple aGNRs (2M = 2). Panels (a) and (b) show the band structure
and transmission of a simple aGNR with N = 6, panels (c) and (d) the band structure and transmission of a simple aGNR with N = 8, panel (e)
displays the band gaps of aGNRs with uniaxial strain σ in x direction. In panels (a) and (c), a is the period of the supercell and a = 3a0, where a0
is the lattice constant of aGNR.
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Our method can also calculate the band in aGNR with
uniaxial strain.[23] As the method developed in Refs. [22] and
[23], the three bond vectors in the aGNR are changed with
the uniaxial strain σ in the x direction as rix → (1 + σ)rix;
riy → (1− νσ)riy, where ν = 0.165 is the Poisson ratio.[23]

The hopping integrals are scaled by the factor ξ = (r0/r)2,
where r0 is the unstrained bond length and r is the bond length
with strain. With some derivations, the new hopping integrals
in Eq. (12) are obtained to be tA,1

n = tB,1
n = t0

(
1−2σ +3σ2

)
and

tA,2
n = tB,2

n =

[
1
2
(
1+σ

2)2
+

3
2
(1−νσ)2

]−1

≈ t0

(
1− 1

2
σ +

3
2

νσ

)
.

We choose the supercell sizes with 2M = 2 and N = 23, 24,

25, which correspond to the cases of N + 1 = 3q, 3q+ 1, and
3q+2.[20] We calculate the band gaps in aGNR with different
strains as shown in Fig. 2(e). We find that the band gap peri-
odically changes with strain. Our results agree well with the
results from the perturbation theory calculations.[23] And our
results come back to the unstrained cases[20] when σ = 0.

3.2. Band structures of aGNR with a line defect

With this supercell method, we now calculate the band
structure of the aGNR supercell with a line defect as shown in
Fig. 1(c). We choose the hopping integrals at the defect posi-
tions: tA,1

n−1 = tB,1
n = −0.5 eV. Other hopping integrals are all

set to be the value of−2.7 eV. With Eq. (12) and the boundary
condition (Eq. (11)), we set up a matrix equation for the eigen-
value calculation. The calculated band structures are shown in
Fig. 3 below.
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Fig. 3. (color online) Band results from ((a) and (c)) the common 2D-TB method (red lines) and ((b) and (d)) our 1D supercell method (blue lines)
for aGNR supercell with a line defect for the cases of ((a) and (b)) N = 8, 2M = 4, and ((c) and (d)) N = 7, 2M = 4. In panel (d) the red lines denote
the bands which need deducing.

Figure 3(a) and 3(b) are for the supercell with the size

N = 8, 2M = 4. As stated before, we choose N/2 p values for

the eigenvalue calculations. In each eigenvalue matrix, there

are 4M eigenvalues. So the total number of the bands for this

system is 32 (2M×N), which is the total number of the atoms

in the aGNR supercell.

Now we study another case where the supercell has the

size N = 7, 2M = 4. In this case, N is an odd number. We find

that if we chose the value of (N + 1)/2 or (N − 1)/2 p, the

total number of bands is 2(N + 1)M or 2(N− 1)M, which is

not equal to the number of bands in the 2D-TB model (2MN).

Here we give a detailed analysis of this discrepancy. As

we stated previously, each p value corresponds to a type of

standing wave in the y direction in the 1D model. In a simple

aGNR, A-type and B-type atoms are equivalent to each other,

so p value can be chosen from 1 to N.[24] Here in our super-

cell (with line defects) case, A-type and B-type atoms are not

equivalent to each other. There are (N−1)/2 (or (N+1)/2) A-

type atoms and (N+1)/2 (or (N−1)/2) B-type atoms in each

separated unit cell. So they have different numbers of the cor-

responding standing waves. In this method, for each 4M×4M

matrix equation we have to choose a value of (N + 1)/2 p.

Thus we obtain a total number of 2M× (N + 1) bands in the

calculation. Then we have to artificially take out 2M bands for

A-type atoms with p = (N+1)/2. The final number of the left

bands is 2M×N, which coincides with the result of the 2D-TB

model.

In Fig. 3(c) we obtain 7×4 = 28 bands from the 2D-TB

calculation. From the 1D-supercell calculation, the total num-

ber of bands with a value of (N+1)/2 p is 4×8= 32 as shown

in the blue lines in Fig. 3(d). Then we deduct 2×M = 4 bands

(red lines at +/−0.5 eV and +/−2.7 eV) for p = (N +1)/2

(the left flat bands at +/−2.7 eV are 2-fold degenerate), and

the left bands are exactly the same as those in Fig. 3(c).
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We notice that this 1D-supercell method gives the same
band result as the 2D-TB method, only if the aGNR supercell
is uniform in the y direction. For a very large system our 1D-
supercell method has a much small computation load, since it
only needs to solve 4M∗×4M eigenvalue matrices, instead of
as large as (2M×N)× (2M×N) eigenvalue matrix.

3.3. Localized states in aGNR supercells

Now we begin to analyze the localized states in these aG-
NRs. The edge states are well known in the zigzag GNR. Here
we find that in the armchair GNR, if there is some line de-
fect, there also exist such edge states, which are localized near
the line defect. These localized states result from the zigzag
edge structures, and they have been discussed in the literature
before.[27,37]

We calculate an aGNR supercell (N = 23, 2M = 16) with
a line defect on the supercell boundaries. The hopping inte-

grals in the defect are set to be t1 = tA,1
n−1 = tB,1

n = −0.5 eV.

Figure 4(a) draws the band structure near the Fermi level. The

numbers in the band figure denote the p values. Figures 4(b)

and 4(c) show the electron density distribution for the band

which is the closest to the Fermi level (p = 9, k = 0) by the

2D-TB method. We also calculate the electron distribution for

p = 9 with the k values averaged in the first Brillouin zone.

The result is very similar to that in the k = 0 case. We see that

the electron is localized near the line defect in the supercell, so

that it is a defect state. In the y direction, there are 3 peaks on

the edge. From our method, those 3 peaks may be explained

by the standing-wave formula. In the y direction, the electron

density behaves as a function of sin2
(

pπ j
N+1

)
. So different p

indices correspond to different peak patterns in the lateral di-

rection. We believe that the STM experiment can detect these

defect edge states as well.
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Fig. 4. (color online) Band structures and the electron density distributions for the edge state in a GNR supercell (N = 23, 2M = 16) with
line defect. Panel (a) shows the bands near the Fermi level with a strong defect (t1 = −0.5 eV). The numbers indicate the p values of the
1D-supercell model; Panels (b) and (c) display the electron density distribution of the edge state for p = 9 band with k = 0 and t1 =−0.5 eV.
Panel (d) exhibits bands near the Fermi level with a weak defect (t1 =−1.8 eV). Panels (e) and (f) indicate the electron density distribution of
the edge state for p = 9 band with k = 0 and t1 =−1.8 eV. In the density distribution figures, panels (b) and (e) are the overhead views; panels
(c) and (f) are the side views of the 3D plot.
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Then we tune the hopping integral t1 to a lower energy
(−1.8 eV), the energy band with p = 8 becomes lower than
the band with p = 9. And the electron density distribution
with p = 9 is plotted as well (see Figs. 4(d)–4(f)). We see with
the lower t1, the edge state becomes more delocalized. In other
words, when the line defect effect becomes smaller, the wave
localization also becomes weaker. We also observe that the
band for p = 9 becomes flatter in the strong-defect case than
in the weak-defect case by comparing their average slopes in
the Brillouin zone. This means that the defect can reduce the
group velocity for the state near the Fermi level. In the limit
of t1 equal to t0 (−2.7 eV), the edge state will be replaced by
a uniform state in the x direction.
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Fig. 5. (color online) Localized states in a long aGNR supercell with the
isolate line defect (t1 = 0). The size of the supercell is set to be N = 17,
2M = 36. Panel (a) is for the wavefunction of the 1D-supercell model
with p = 7, panel (b) the wavefunction of the 1D-supercell model with
p = 8.

From Subsection 2.2, we see that in a semi-infinite aGNR
the localized state exists only when p > (N +1)/3. We find
that this condition also holds for the possible local states in
the defect-involved aGNR supercells, if the p value is chosen
to be close to the Fermi level, and the hopping integral t1 is
set to be about zero, like an isolate system. Figures 5(a) and
5(b) show an example (N = 17, 2M = 36) for the wavefunction
(real part) in the x direction by the 1D-supercell method. They
correspond to the side views of the 3D electron density distri-
bution. The defects are positioned on the left and right sides
of the supercell. We see that for the local edge states, p value
should satisfy (N +1)/3 < p ≤ (N +1)/2. The upper bound

come from the standing wave condition as stated before. In
this case there are three available p values (p = 7, 8, 9).

In Figs. 5(a) and 5(b) we see that the wavefunctions
are localized near the two boundaries (line defects). From
Eq. (17b) we know that a large p value corresponds to a
stronger decaying mode. In Fig. 5 we see that the wavefunc-
tion with p = 8 has a more localized behavior than that with
p = 7 as expected. We also check that when p ≤ 6, there are
no local states in the supercell system. The physical reason is
that the mode with a large p value corresponds to a high-lying
lateral standing-wave mode and thus a small decaying wave-
vector. This is similar to the scenario of the evanescent mode
of 2D-electron gas in a waveguide.

3.4. Localized states in the semi-infinite aGNR

Now we consider the localized state near the edge of a
semi-infinite aGNR. As discussed in Subsection 2.2, the local
state exists only at E = 0 and An = 0. We assume that Bn = 1
and utilize the iteration relation in Eq. (17b) to calculate Bn

(n > 1) for these local states in a semi-infinite aGNR. Then
we use Eq. (5) to recover the 1D result into the 2D case. Fig-
ure 6 gives an example for the localized state in a semi-infinite
aGNR with the width N = 23 and the standing-wave number
p = 9.

From Fig. 6 we see that this state is very similar to the
local state in the aGNR supercell with a strong line defect.
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Fig. 6. (color online) Electron density distribution of the localized state
in a semi-infinite aGNR (N = 23, p = 9). Panel (a) shows the overhead
view and panel (b) the side view of the 3D plot.
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This is reasonable since a very long supercell with a strong
line defect (t1 = 0) can be regarded as two combined semi-
infinite systems. In the y direction, the peak patterns are also
agreeable with the stand-wave formula sin2 (pπ j/(N +1)) as
stated in Fig. 4 before.

3.5. Localized states in the armchair boron-nitride nano-
ribbon

Boron-nitride (BN) nanoribbon is very similar to the
graphene nanoribbon, except that in the boron–nitride nanorib-

bon, A-type and B-type atoms are different (Fig. 1(d)). We can
also use the method we introduced in Section 2 to calculate
the energy band and localized state. The parameters of the TB
calculation are listed in Table 1.[36]

Table 1. Tight binding parameters for the boron-nitride nanoribbon.

TB parameter Value/eV

εN –1.45
εB 3.2

tB−N –2.45
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Fig. 7. (color online) Band structures of armchair BN nanoribbons from the 1D-supercell method for the cases of (a) N = 6, 2M = 2;
(b) N = 8, 2M = 2; (c) N = 23, 2M = 16, the red lines are for p = 8. In this figure, a is the period of the supercell.
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Fig. 8. (color online) Localized states in an armchair BN nanoribbon supercell with the line defect (t1 = −1.0 eV). The size of the
supercell is set to be N = 23, 2M = 16. Panel (a) shows the wavefunction of the localized state with p = 8 in the 1D-supercell model,
panel (b) the electron density distribution of the localized state with p = 8 in the 2D-TB model, panel (c) the wavefunction of the
localized state with p = 9 in the 1D-supercell model, and panel (d) the electron density distribution of the localized state with p = 9
in the 2D-TB model.
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We first calculate the energy bands of two single-column
armchair BN nanoribbons with the geometric sizes: (2M = 2,
N = 6) and (2M = 2, N = 8) as shown in Figs. 7(a) and 7(b),
respectively. Because of breaking the symmetries of A-type
atom and B-type atom, a large band gap is open compared with
the band of aGNR (see Figs. 2(a) and 2(c)). For N = 8, the
graphene nanoribbon is gapless since it is 3m+ 2 type,[20,24]

while the BN nanoribbon has a large gap due to breaking the
symmetries of εN and εB.

Then we choose an armchair BN nanoribbon supercell
with a line defect and the size parameters N = 23, 2M = 16
(see Fig. 1(d)). The hopping integrals at the defect positions
are set to be t1 = tA,1

n−1 = tB,1
n = −1.0 eV. We use our 1D-

supercell method to calculate the bands (Fig. 7(c)) and two
local states for the bands near the Fermi level with p = 8
and 9 (Fig. 8, with k = 0 in the reciprocal space). This 1D-
supercell method gives the same results as those from the 2D-
TB method. The local state is asymmetric because the A-type
and B-type atoms are different.

In Figs. 8(a) and 8(b), it seems that the wavefunction de-
cays only from the right to the left. In fact, it also decays from
the left side to the right side as seen apparently in Figs. 8(c)
and 8(d). The decaying trend from the left side is hidden by
another trend which decays from the right side. In this super-
cell the nitrogen atoms are on the right boundary and the boron
atoms are on the left boundary. As εN < εB (Table 1), we find
that for the band besides the Fermi level, the electron density
near the nitrogen-atom boundary (right) is larger since these
atoms have a lower energy. The electron densities from both
boundaries all decay towards the inner region of the supercell.
Comparing Fig. 8(a) with Fig. 8(c), it is easy to see that the
decaying trend with p = 9 is stronger than that with p = 8. We
may explain this by regarding the BN nanoribbon unit with a
line defect as a quasi-semi-infinite ribbon. From Eq. (17(b)),
we see that the decaying trend is larger with a large p value.
It is also observed in Fig. 7(c) that the band with p = 9 is flat-
ter than the band with p = 8, which indicates a smaller group
velocity for the first band.

4. Conclusions
In this paper we develop a new 1D method for the arm-

chair GNR-like systems, including the supercells with line de-
fects and uniaxial strains. Our method gives the same results
as the 2D-TB method. However, our method may save a lot of
computation load for very large systems. By this method we
investigate the properties of many localized defect edge states
in these systems. A condition for these localized states to exist
in the semi-infinite aGNR is derived as p> (N+1)/3. We find
that this condition is also a criterion for the localized states in
the aGNR supercells with a strong line defect (a small hopping
integral near the defect).

We also study the BN nanoribbon supercell. We find
that there exists some asymmetric localized state in these BN
nanoribbons. For all of these defect states, the localization de-

gree depends on two factors: the defect intensity (the hopping
integral) and the lateral standing-wave index (p value).

This method is suitable for the band calculation of the
armchair-like 2D materials. We will apply it to these materials
in the future study.
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[23] Lü Y and Guo J 2010 Nano Res. 3 189
[24] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B

75 165414
[25] Jiang L W, Zheng Y S, Yi C S, Li H D and Lü T Q 2009 Phys. Rev. B
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